Accelerating the Primal Hybrid Attack against Sparse LWE
using GPUs

Ludo N. Pulles! Paul Vié?
December 16, 2025

LCWI, Cryptology Group, Amsterdam, the Netherlands

2T¢lécom Paris, Paris, France

Introduction & Motivation

Context: Post-Quantum Cryptography

e Lattice-based cryptography is fundamental to post-quantum KEMSs and signatures
e CRYSTALS-Kyber, CRYSTALS-Dilithium, Falcon (NIST standards)

e Security based on hardness of Bounded Distance Decoding (BDD) in LWE

lattices

e Sparse LWE: Used in Fully Homomorphic Encryption (FHE) bootstrapping

e Small & sparse secrets = efficiency gains
e But: smaller search space = potentially more vulnerable to attacks

The Problem

Current State

e Recent attacks (Salsa, Cool & Cruel) use extensive parallelization on large GPU
clusters and Cool & Cruel claims to be currently the best attack on their
benchmark settings

° Lattice estimator (from Martin Albrecht) predicts that theses instances can
be broken with modest resources

e However:

Our Goal

Resolve this situation: Implement and accelerate the Guess + Verify (G+V)
primal hybrid attack using GPUs, validating theoretical predictions in practice

Mathematical Background

Lattices: Definitions

Definition (Lattice)

A lattice £ C R? is a discrete subgroup of RY.
Given a basis B = (by, ..., by), it is defined as:

/.:(B) = {Z Gilo); ‘ Ci € Z} idet(ﬁ)
i=1

Key Invariants
e Rank: n (full-rank if n = d).
e Determinant: det(£) = y/det(B7B)

(Volume of the fundamental domain)

e First minimum: \(£) = MiNzer\ (6} V]|

Lattice Density: The Gaussian Heuristic

The Intuition

A lattice L is a discrete grid. How dense is it?

e Denser lattices have shorter vectors.

e Density is inverse to the determinant (volume).

Gaussian Heuristic Prediction
For a random lattice of rank d, the length of the shortest vector A1(L) is estimated
by:

M (L) ~ GH(d) - det(£)Y/¢ where GH(d) ~ 5
i

Orthogonalization: GSO and QR

Gram-Schmidt Orthogonalization (GSO) .
Constructs an orthogonal basis (b7, ..., b}) from B.
i—1 by
E;" = Ei—ZM:‘Ji;j'k (proj. J_span(Eo...E,-,l))
e bo = B

where the coefficients are:
by represents the "height” of by
< i j*> above by.
Hij = ==
* |2
165 |

Orthogonalization: GSO and QR

b
Instead of GSO, we compute B = QR where Q is !
orthogonal (Q7Q = 1) and R is upper-triangular.

671l = Ruy
The columns of Q = (g . .. g») are the normalized
GSO vectors: 5 — 58

qi = b’ /|67 |
Ef represents the "height” of by

. Ny
The matrix R encodes the GSO geometry: above bo

Diagonal: R; = ||b¥||
Off-diagonal: R; = (b;, ;)
GSO Coeffs: Hji = R,'J'/R,','

Solving BDD: Babai’s Nearest Plane Algorithm

Fundamental Domain E =7
Babai domain of B: L
P(B*) = {y|3ce[-},L):y=8B*c} t? & 1
The Intuition 165l . E
Babai's algorithm approximates the Closest Vector bf/\\' s 70
Problem (CVP). .
by
e It works like solving a triangular system
(back-substitution).
o Difference: We to the nearest integer Returns a unique lattice point BC such
at each step instead of solving exactly. that the error & € P(B*) (the Babai

fundamental domain). 7

Solving BDD: Babai’s Nearest Plane Algorithm

=2
Fundamental Domain

Babai domain of B:
P(B*)={y|3ce[-3, 3)": y=B*c}

C3:1

Algorithm (Using GSO/QR) 53] L

. b2 . =0
Input: Target t, Basis B. L

1. Write t'in the GSO basis: t =Y v,-Ef. by

2. Loop i from n down to 1:
e ¢i=|v;] (Nearest integer)
o Update £« £ — cib; Returns a unique lattice point B¢ such
e Recompute coords for next step. that the error & € P(B*) (the Babai

fundamental domain). 7

The Learning with Errors (LWE) Problem

Standard LWE (n, m, g, X)
Find & given (A, E) where. The secret s’ is sparse:

o Hamming weight h < n.
b=A5+& (mod q) & eie

A —U(Zg™")

S, € < x (Gaussian/Binomial)

Only h non-zero entries.

Distributions:

e Ternary: Non-zeros are +1.

+ e Binomial: Non-zeros from B,,.
A el=p

100010 0-10/0 ¢« Mostly0s

The Learning with Errors (LWE) Problem

The secret s is sparse:

Standard LWE (n, m, q, X)

= Hamming weight h < n.
Find § given (A, b) where: & Weie
Only h non-zero entries.

b=A5+é& (mod q)
A%U(Z?XH) ‘0‘0‘1‘0‘0‘—1‘0‘0‘el\/lostlyOs
S, € < x (Gaussian/Binomial)

Security Gap

+ Search space drastically reduced:
A €=|b

Spar n
supp(l” 2% () - Isupn()

= Vulnerable to Hvybrid Attacks.

BDD: Definition and Complexity

Definition (Search-BDD)

Given a basis B and a target t close to the lattice:
t=Bc+e
Find the lattice vector v = BC. o L5 ([

® thard

Hardness (Parameter «)

® Green: UniqLe Decoding ©

Difficulty depends on error norm ||€]| = a - A1(L). i (o Aoy

e « < 1/2: Easy. Unique solution guaranteed. BDD becomes hard when the target T is

outside the packing spheres.

e o €[1/2,1): Gap. Solution likely unique.
e « > 1: Hard. Multiple solutions.

BDD: Definition and Complexity

Definition (Search-BDD)

Given a basis B and a target t close to the lattice:

t=Bc+ ¢
o ¥o?easy

® tharg

—

Find the lattice vector v = BC.

® Green: UniqLe Decoding 0
. " " Radius (= A1/2
Finds the solution if error is in the "box": s (= 0/2)
. 1 - P BDD becomes hard when the target t is
‘(b;k, é}\ < E H b;k H Vi outside the packing spheres.

BDD Reduction to Projected Sublattice

Lemma (Reduction Lemma)
Let (B, t) be a BDD instance with error €°. Let

{=n-n. B

The full instance is solved if:
1. Babai succeeds on the top-left:

Indices Indices
S o 1 - . 0...¢ ¢...n
(b7, €°)| < §Hbi 1> Vi<t (Easy) ' (Hard)

2. Oracle succeeds on bottom-right:

SearchBDD solves the projected instance
correctly.

10

BDD Reduction to Projected Sublattice

Algorithm: BDDReduce(B, t, ')
Input: Basis B, target t, block size n'.

{=n—n. 2 .
1. Solve Hard Part (Projected): !
(52’ é'/) « SearchBDD(B[g;,,.g:,,], ﬂ_éL(f‘)) Indices E Indices
' 3. Babai ¥ 0...7 v £...n ¥ 1. Search
2. Update Target (Back-Subst): (Easy) , (Hard)
Fres =t- B[O:n,@:n](z :

3. Solve Easy Part (Babai):
(51, é’) — BabaiNP(B[O:é,Ozé]a Fres)

4. Qutput: Return (¢ = (c1, 62), €) 10

The Primal Attack: Embedding (Bai-Galbraith)

1. The Embedding
Construct a lattice A(B) containing the error: glm | A

b &
=B + 0 |
—— —
F gemb e Eopt
{2 =
Bad ¢ (Flat) Good & (Round)

We tune é‘ to ba Iance the VOIU me a nd error norm. Optimizing & aligns the error shape with the lattice

geometry, making BDD easier.

[

(7))

llell /n
15TV m

= Makes the error &, "spherical” relative to the
volume det(L).

€= m/n

11

Primal Hybrid Attacks

Primal Hybrid Attack

Concept: Hybrid Splitting
Split the secret S into two parts:

Context: s'is sparse.
e Guessed Part (s1):

Exhaustive search. Drop (Guess 0) Full Guess
e Unknown Part (5): Assumption 5i=0 Si € Support
Recovered via Lattice Cost/lIter Low High
Reduction (BDD). # Candidates 1 ~ ()
Success Prob. Low High
Secret § Use Case Very Sparse | Moderately Sparse

51 (Guessed) 5 (Lattice Red.)

"Drop & Solve” relies on the high probability that indices in $;
are zero.

dim k dim n— k
12

Guess + Verify: The Algorithm

Reduced Basis

Parameters ¥ 1
3. Recover 5§ ——> §i
e k: Dim. of guessed part (exhaustive). 2. Update Target
e h': Weight of guessed part. Arem Agues
e (3: BKZ block size (reduction). » %

k
Cost ~ (h’) * TBabai + Treduction

13

Guess + Verify: The Algorithm

. Reduced Basis
Execution Flow i |
3. Recover 5 —> _,

Preprocessing: Reduce basis B of dim n — k. o S1
2. Update Target
Online Phase (Loop): ’ ’

A rem. 4 gues:

1. Guess a candidate 5, (of weight A’).

%
2. Update the target (remove guess): |
F — F_ Aguess§2

3. Solve BDD on the remaining part:

5 + Babai(B, t')
. . Cost ~ (;l,(r) - TBabai T Treduction
4. Verify: Is the residual error small?

If |t — AremSi|| < R = Found!

13

Complexity Analysis: The Master Equation

Total Attack Cost (Work Factor) Reduction |<.
To find the secret with high probability: EREP) \Il?epeat
Il/ptotal
Cost ~ - (Costgkz-g + G - Costgabai) Enumeration (G -
Ptotal
Babai Check
Babai Check
The Components
Probability (piotal): Search Space (G):
/ . / k /
pcomb(ka h) X Pbabal(ﬁ’ k, h) G ~ <h/> 5 |SUPP(X5)‘h
(Prob. that guess is in support x Prob. Babai
works) (Number of candidates to test per 14

reduction)

Optimizing the Trio (k, i,)

Log Cost

The 3 Tuning Knobs RepetiNo

We minimize the cost by balancing:

1. Blocksize (Lattice Strength):
o 1 Probability (Geometry). e °ta'3 Cos
e | Cost explodes (Exp). 1

2. Dimension k (Hybrid Split): Optimalt 2rams (k, #', 8
e 1 Reduction is easier (dim n — k). Set
e | Search space G grows.

3. Guess Weight h’' (Coverage):
e T Probability (Combinatorics).
e | G explodes (:,) Minimize A Costgkz—g + G(k, h") - Costgapai

Ptotal (67 k7 h/)

15

Main Contributions

Our Contributions: A Full GPU Pipeline

1. cuBLASter: GPU Lattice Reduction
e Port of BLASter (Asiacrypt '25) to

CUDA/CuPy.
e Fast LLL/DeepLLL/BKZ. cu-BLAStt-ar Your lib
e Bridges gap to GPU-G6K (5 > 60). (B Riducnon)

Dim. Reduction
(Sublattice Proj)

v
Batched Babai

(Parallel Solve)

16

Our Contributions: A Full GPU Pipeline

1. cuBLASter: GPU Lattice Reduction
e Port of BLASter (Asiacrypt '25) to

CUDA/CuPy.
o Fast LLL/DeepLLL/BKZ. cuBLASter }
e Bridges gap to GPU-G6K (5 > 60). (e Ridu‘:tion)

2. Smart BDD Preprocessing Dim. Red"Ct'O"}» Eiiciene]

o Dimension Reduction: Project to sublattice (Sublattice Proj)

before decoding. v
e Accelerates BDD solving. Batched Babai

(Parallel Solve) }

16

Our Contributions: A Full GPU Pipeline

1. cuBLASter: GPU Lattice Reduction
e Port of BLASter (Asiacrypt '25) to

CUDA/CuPy.
o Fast LLL/DeepLLL/BKZ. CU_BLAStt_ar]
e Bridges gap to GPU-G6K (5 > 60). (Basis Reduct|on)

2. Smart BDD Preprocessing

Dim. Reductlon
(Sublattlce Proj)

e Dimension Reduction: Project to sublattice

before decoding.
e Accelerates BDD solving. BatChEd Babal]

(Parallel Solve)

3. Batched Babai on GPU

e Massively parallel verification.

e Exploits cuBLAS batch operations.
16

Implementation: Open Source

© GitHub Repositories
e cuBLASter: https://github.com/ludopulles/cuBLASter
e GPU Primal Hybrid: https://github.com/ludopulles/GPUPrimalHybrid

Key Technologies
e CUDA + CuPy (NumPy-compatible GPU API)
e cuBLAS and cuSOLVER for linear algebra
e Custom GPU kernels for specialized operations

e Integration with fplll and G6K

17

Why GPUs for Lattice Reduction?

The Solution: GPU Offloading

Lattice reduction (LLL, BKZ) is GPUs offer massive throughput for linear
dominated by floating-point arithmetic. algebra.
Heavy Compute: Gram-Schmidt e Massive Parallelism: Thousands of cores
Orthogonalization (GSO) costs to parallelize independent operations.
O(n®) (by QR). e Specialized Hardware/Libs: Optimized
Memory Bound: Large basis for matrix multiplications, triangular
matrices saturate CPU caches. solves, QR factorizations.

The Key Constraint: Batching
To leverage GPUs effectively, we must batch small linear algebra operations to

amortize kernel launch overhead. 18

Seysen’s Size Reduction Algorithm

Classical Approach (CPU)

Recursive algorithm on upper-triangular R € R™*":

Ry R
1. Split: R= (011 12) with Ry size [n/2]
22

2. Recursively reduce R1; and Ro;

3. Reduce Ri, with respect to Ry

Problem: Sequential recursion doesn’t parallelize well, because R11 and R22 may be
not the same size. (If n is not a power of two)

19

Batched Size Reduction: Motivation

GPU Optimization: Batched Reduction
Key insight: Many submatrices of the same size

can be reduced in parallel
L Step 1: k=2
e Parse R with Ryq size % . 2[loga(n)] (next power ’/E/ R
Of 2) Parallel|
. I (I‘l)“ . ! Batch S

e For each level k =2,4,8,. .., 2[Mog(]I. -1
e |dentify all kK x k diagonal blocks: !
o . 2:- k=4 Parallel
RUik:(i-+ 1)k ik (i4+1)K] Step L e

e Reduce all blocks in one batched kernel call

e Total: 2[log, n] kernel sequences (vs O(n)

sequential calls)

20

Batched Size Reduction: Implementation Details

Interior vs Terminal Blocks

R
e Interior blocks: Full kK x k submatrices, can
batch efficiently
e Terminal block: Last block may be smaller erior (k x
(n—|n/k]k) x (n— |n/k|k), handled Batched e e

separately

Optimizations
e Level k = 2: Vectorized super-diagonal update (single kernel)

e For k < 4 interior blocks: Fall back to unbatched path (avoid launch overhead)

Batching reduces kernel launch overhead from O(n) to O(log n) calls "

Theoretical Foundation: Recursive Batch Nearest Plane (BLASter)

Algorithm 1 BatchNearestPlane(R, T)

1: Input: R € R™" T ¢ R™N
2: if n=1 then

Complexity

By using fast matrix

3 C+« [T/R] multiplication for the update
4 T+ T-RC step, the runtime is:
5: return C
6: else O(N - n‘*’*l)
. Ri1 R LE}
7 Split R = T =
P 0 Rx)’ T

8: C, + BatchNP(Ra2, T2) {Recurse Bottom}
9: Ti< T:— R»C, {Update Top}

10: C: + BatchNP(R11, T1) {Recurse Top}
11: return (g;)

12: end if

22

Batched Nearest Plane: The Blocked Algorithm (BLASter)

The Core Idea

We simulate the recursive calls Rj;) — (Rij), Rjjk))- Instead of updating the whole
matrix at each step, we wait until the bottom block [/, k) is fully solved to update
the top block [i,/) in one go.

The Procedure (lterate j from n down to 1):

1. Scale & Round: ¢ = LR%J 'Tj"'l ezN
2. We check if j is the "split
point” of a recursion block [i, k).
o If yes: We have all coefficients C;., ready.
e We perform the update corresponding to the Ri> G, term in the algorithm:

Tij < Tij — Riyj, e X G

(Otherwise, we just do a minimal scalar update to prepare row j — 1)

Ideally suited for GPU: Since N is huge, the update step becomes a massive matrix operation. 23

Batched Babai: The GPU Pipeline

1. Batch Structure (B = B;-B,) : . x|
We split the search space into: ° —
e Indices (B;): Choice of support S in the lGEMM
guessed part (B; < (%), typically
1024 ...4096, to fit in GPU memory). G (Guesses)
e Values (B,): Coefficients on fixed S.
(e.g., for xs < By and h' = 3, Toalbchp =55
B, = 43 = 64) [Batched Babai Kernel]

24

Batched Babai: The GPU Pipeline

2. Execution Flow (5 Steps)

1. Gather: Fetch columns of A into tensor

Bixmxh'
AER ' ; Acols X \Y%
/ [a]
2. Stack Values: Prepare V € R" x5/, —
3. Batch GEMM: Compute guesses. J/GEMM

G < Reshape(A) x V
G (Guesses)

Result G is m x (B; - B,).

Total Batch |B =B -B,

4. Project: Update targets in parallel.

T_ Q;([_)TT - G) [Batched Babai Kernel]

5. Solve: Run Babai on (Rxp, T). o

Dimension Reduction: The Pre-Filtering Strategy

Motivation: fast-reject

Full Babai is expensive (O(n?)). We need a cheap
pre-filter.

e ldea: Project lattice to last ¢ coordinates.

e Check: If ||my(€)]| > 7, reject immediately.

G Candidates

+ (= 10%)

Projected Check| ... - -
Dim ¢ < n (Fast)

Survivors
~ Prp

Full Babai
Dim n (Slow)

Small ¢ — Faster check but
requires tighter 7 (risk of False

Negatives). ,
5

Dimension Reduction: The Pre-Filtering Strategy

False Positive Rate (prp)
We model the target as uniform random in the
projected torus. The expected number of false positives

IS:
VO|(TB[)

" det(Rpro))
To cap FP at 1%, we set 7 such that:

E[FP] ~ G

) NN 1/¢
-~ GH(E)- <0.01 dzt(RpmJ)>

G Candidates

+ (= 10%)

Projected Check| ... - -
Dim ¢ < n (Fast)

Survivors

~ Prp

Full Babai
Dim n (Slow)

Small ¢ — Faster check but
requires tighter 7 (risk of False

Negatives). ,
5

Dimension Reduction: True Positive Analysis

The " Good” Candidate
For the correct guess, the residual is Gaussian

noise:
Enroj ~ N(0,021y)

Its squared norm follows a Chi-squared
distribution:

18rojl? /0% ~ X7

We must accept the correct guess with prob prp
(e.g., 99%):

Toroj = O \/QuantileX%(pr)

4
Error ||&]?

Synthesis
We need a gap between this 7,
(TP) and the previous Tpmax

(FP). o

Dimension Reduction: Finding the Optimal ¢

The Feasibility Condition
We need a radius 7 that satisfies both:
1. High enough to catch the secret (TP).

2. Low enough to filter bad guesses (FP).

Find the smallest ¢ such that:

prp det |R|\ /¢
/a2 (prP) < GH(() - -
—_————

Min 7 (Noise) Max 7 (Density)

Then pick 7 in the gap.

Benefit

Threshold Radius 7

30

Optimal Projection Dimension £*

Feasible Region

i
[}
.

Z

20

1 L
10 60
Projection Dimension ¢

Reduces verification cost from O(n?) to O((£*)?). Typically £* < n (e.g., 40 vs 1000).

80

100

27

Experimental Results

Experimental Setup

Hardware Platforms

Machine CPU Cores GPU

Y AMD EPYC-Milan 2.745GHz 96 NVIDIA H100 (1)

H Intel Xeon Gold 6248 2.5GHz 80 NVIDIA RTX 2080 Ti (4)
Z Intel Xeon Gold 5222 3.8GHz 16 NVIDIA RTX 2080 Ti (8)

Comparison Baseline
Cool & Cruel benchmarks :

e Large computing cluster with 256 NVIDIA V100 GPUs

e Report: minimum GPU-hours over 10 runs (when successful)

Focus on GPU-hours and core-hours, not wall time (accounts for parallelism) 28

Experimental Protocol: LWE Instances

LWE Parameter Sets Reproducibility
Extremely sparse instances from Wenger et e Sample Size: 5-6 instances
al.: per set.
Parameter Set A Set B e Control: Fixed PRNG seed for
Error Dist. Binomial Gaussian determmlilie amsreon
Std Dev n=2 o=3.19
Secret h he{9,...,25} .
Sparsity Fixed Hamming Weight Unlike some benchmarks that

report the minimum time (lucky
Dimension n=x-D € {512,1024}

Structure Module-LWE (s € {1,2}) runs), we report:

Average Wall-Time

(over successful runs)

Success Rate notation: x/y (x successes / y attempts). 29

Lattice Reduction Benchmarks: cuBLASter vs BLASter

Dimension Wall time

Algorithm 512 1024 flatter BLASter cuBLASter

LLL 512 — 156 s 6.8 s 29s
LLL — 1024 — 26.0 s 5.6s
BKZ-60 512 — — 363 s 218 s
DeepLLL-4 — 1024 904 s 223 s 49 s

e cuBLASter outperforms BLASter for n > 512
e 2 — 4x speedup for large dimensions

e Progressive BKZ-60 in dim 512: 40% faster

30

Attack Success: Guess + Verify vs Cool & Cruel

Instance Parameters ~ G+V (ours) C+C

Type n h k h succ. GPU-h succ. GPU-h
Bin 2-256 11 393 3 5/6 57 2/10 26+13
Bin 2-256 12 395 3 4/5 30.1 — —

Bin 2-256 20 234 <3 4/5 22.6 3/10 51+ 13
Bin 2-256 21 235 <3 5/5 27.9 3/10 154 +13
Bin 2-256 25 235 <3 5/5 164.0 1/10 10752+128
Ter 1-1024 11 768 3 5/5 9.1 1/10 102 £+ 52

Ter 1-1024 9 800 3 5/5 9.4 10/10 31+6
Ter 1-1024 10 801 3 5/5 423 0/10 —

31

Performance Comparison

Guess + Verify Advantages
e G-+V achieves higher success rates on almost all instances
e G+V solves instances where C+C fails (e.g., Ter with h = 10)

e Lower GPU utilization than C+C (even including lattice reduction!)

Hardware
e Our experiments: 1 NVIDIA H100 or 2-8 RTX 2080 Ti GPUs
e C+C benchmark: Large cluster with 256 NVIDIA V100 GPUs

e Fair comparison: Focus on core-hours and GPU-hours, not wall time

32

Conclusion

Contributions

1. cuBLASter: Fast GPU lattice reduction library
e 2-4x speedup over BLASter for n > 512
2. Efficient Guess + Verify implementation

e Dimension reduction for BDD
e Batched Babai's Nearest Plane on GPU

3. Practical validation of primal hybrid attacks

e Outperforms Cool & Cruel in success rate and efficiency
e Open-source baseline for sparse LWE attacks

83

Impact & Future Work

Security Implications

e Practical demonstration that primal hybrid attacks are effective against sparse
LWE

e Validates lattice estimator predictions

Future Directions
e Explore meet-in-the-middle in primal hybrid guessing

e Optimize cuBLASter for even larger dimensions (Implement CUDA enumeration,
etc.)

e Explore other usecases of cuBLASter and batched Babai NP in lattice-based

cryptanalysis

34

Thank you!

Questions?
Code available at: Preprints:
github.com/ludopulles/cuBLASter https://ia.cr/2025/1990
github.com/ludopulles/GPUPrimalHybrid https://ia.cr/2025/1002

Reference for benchmarks of Cool & Cruel

E. Wenger, E. Saxena, M. Malhou, E. Thieu and K. Lauter, "Benchmarking Attacks
on Learning with Errors”, in S&P 2025

url: https://ieeexplore.ieee.org/document/11023470

https://ieeexplore.ieee.org/document/11023470

	Introduction & Motivation
	Mathematical Background
	Lattice Theory Foundations
	Learning with Errors
	Bounded Distance Decoding

	Primal Hybrid Attacks
	Guess + Verify Attack

	Main Contributions
	Batched Babai's Nearest Plane on GPU

	Experimental Results
	Hardware and Methodology
	cuBLASter Performance

	Conclusion

