
Accelerating the Primal Hybrid Attack against Sparse LWE

using GPUs

Ludo N. Pulles1 Paul Vié2

December 16, 2025

1CWI, Cryptology Group, Amsterdam, the Netherlands

2Télécom Paris, Paris, France

1

Introduction & Motivation

Context: Post-Quantum Cryptography

• Lattice-based cryptography is fundamental to post-quantum KEMs and signatures

• CRYSTALS-Kyber, CRYSTALS-Dilithium, Falcon (NIST standards)

• Security based on hardness of Bounded Distance Decoding (BDD) in LWE

lattices

• Sparse LWE: Used in Fully Homomorphic Encryption (FHE) bootstrapping

• Small & sparse secrets ⇒ efficiency gains

• But: smaller search space ⇒ potentially more vulnerable to attacks

2

The Problem

Current State

• Recent attacks (Salsa, Cool & Cruel) use extensive parallelization on large GPU

clusters and Cool & Cruel claims to be currently the best attack on their

benchmark settings

• But: Lattice estimator (from Martin Albrecht) predicts that theses instances can

be broken with modest resources

• However: No efficient open-source implementation exists

Our Goal

Resolve this situation: Implement and accelerate the Guess + Verify (G+V)

primal hybrid attack using GPUs, validating theoretical predictions in practice

3

Mathematical Background

Lattices: Definitions

Definition (Lattice)

A lattice L ⊆ Rd is a discrete subgroup of Rd .

Given a basis B = (b⃗1, . . . , b⃗n), it is defined as:

L(B) =

{
n∑

i=1

ci b⃗i | ci ∈ Z

}

Key Invariants

• Rank: n (full-rank if n = d).

• Determinant: det(L) =
√
det(BTB)

(Volume of the fundamental domain)

• First minimum: λ1(L) = minv⃗∈L\{0⃗} ∥v⃗∥

det(L)

b⃗1

b⃗2

λ1(L)

4

Lattice Density: The Gaussian Heuristic

The Intuition

A lattice L is a discrete grid. How dense is it?

• Denser lattices have shorter vectors.

• Density is inverse to the determinant (volume).

Gaussian Heuristic Prediction

For a random lattice of rank d , the length of the shortest vector λ1(L) is estimated

by:

λ1(L) ≈ GH(d) · det(L)1/d where GH(d) ≈
√

d

2πe

5

Orthogonalization: GSO and QR

Gram-Schmidt Orthogonalization (GSO)

Constructs an orthogonal basis (b⃗∗1, . . . , b⃗
∗
n) from B.

b⃗∗i = b⃗i −
i−1∑
j=0

µi ,j b⃗
∗
j (proj. ⊥ span(b⃗0 . . . b⃗i−1))

where the coefficients are:

µi ,j =
⟨b⃗i , b⃗∗j ⟩
∥b⃗∗j ∥2

b⃗0 = b⃗∗0

b⃗1

b⃗∗1

b⃗∗1 represents the ”height” of b⃗1
above b⃗0.

6

Orthogonalization: GSO and QR

Equivalence with QR Decomposition

Instead of GSO, we compute B = QR where Q is

orthogonal (QTQ = I) and R is upper-triangular.

The columns of Q = (q⃗1 . . . q⃗n) are the normalized

GSO vectors:

q⃗i = b⃗∗i /∥b⃗∗i ∥

The matrix R encodes the GSO geometry:

• Diagonal: Rii = ∥b⃗∗i ∥
• Off-diagonal: Rij = ⟨b⃗j , q⃗i ⟩
• GSO Coeffs: µj ,i = Rij/Rii

b⃗0 = b⃗∗0

b⃗1

∥b⃗∗1 ∥ = R11

b⃗∗1 represents the ”height” of b⃗1
above b⃗0.

6

Solving BDD: Babai’s Nearest Plane Algorithm

Fundamental Domain

Babai domain of B:

P(B∗) =
{
y⃗ | ∃c⃗ ∈ [−1

2 ,
1
2)

n : y⃗ = B∗c⃗
}

The Intuition

Babai’s algorithm approximates the Closest Vector

Problem (CVP).

• It works like solving a triangular system

(back-substitution).

• Difference: We round to the nearest integer

at each step instead of solving exactly.

c3 = 0

c3 = 1

c3 = 2

b⃗1

b⃗2

∥b⃗∗3∥

t⃗ Close to

layer 1

Output Property

Returns a unique lattice point Bc⃗ such

that the error e⃗ ∈ P(B∗) (the Babai

fundamental domain). 7

Solving BDD: Babai’s Nearest Plane Algorithm

Fundamental Domain

Babai domain of B:

P(B∗) =
{
y⃗ | ∃c⃗ ∈ [−1

2 ,
1
2)

n : y⃗ = B∗c⃗
}

Algorithm (Using GSO/QR)

Input: Target t⃗, Basis B.

1. Write t⃗ in the GSO basis: t⃗ =
∑

vi b⃗
∗
i .

2. Loop i from n down to 1:

• ci = ⌊vi⌉ (Nearest integer)

• Update t⃗ ← t⃗ − ci b⃗i
• Recompute coords for next step.

c3 = 0

c3 = 1

c3 = 2

b⃗1

b⃗2

∥b⃗∗3∥

t⃗ Close to

layer 1

Output Property

Returns a unique lattice point Bc⃗ such

that the error e⃗ ∈ P(B∗) (the Babai

fundamental domain). 7

The Learning with Errors (LWE) Problem

Standard LWE (n,m, q, χ)

Find s⃗ given (A, b⃗) where:

b⃗ = As⃗ + e⃗ (mod q)

A← U(Zm×n
q)

s⃗, e⃗ ← χ (Gaussian/Binomial)

A
s⃗ +

e⃗ = b⃗

Sparse LWE (Our Focus)

The secret s⃗ is sparse:

• Hamming weight h≪ n.

• Only h non-zero entries.

Distributions:

• Ternary: Non-zeros are ±1.
• Binomial: Non-zeros from Bη.

0 0 1 0 0 −1 0 0 ← Mostly 0s

8

The Learning with Errors (LWE) Problem

Standard LWE (n,m, q, χ)

Find s⃗ given (A, b⃗) where:

b⃗ = As⃗ + e⃗ (mod q)

A← U(Zm×n
q)

s⃗, e⃗ ← χ (Gaussian/Binomial)

A
s⃗ +

e⃗ = b⃗

Sparse LWE (Our Focus)

The secret s⃗ is sparse:

• Hamming weight h≪ n.

• Only h non-zero entries.

0 0 1 0 0 −1 0 0 ← Mostly 0s

Security Gap

Search space drastically reduced:

|Supp(χ)|n Sparse−−−−→
(
n

h

)
· |Supp(χ)|h

⇒ Vulnerable to Hybrid Attacks.
8

BDD: Definition and Complexity

Definition (Search-BDD)

Given a basis B and a target t⃗ close to the lattice:

t⃗ = Bc⃗ + e⃗

Find the lattice vector v⃗ = Bc⃗ .

Hardness (Parameter α)

Difficulty depends on error norm ∥e⃗∥ ≈ α · λ1(L).

• α < 1/2: Easy. Unique solution guaranteed.

• α ∈ [1/2, 1): Gap. Solution likely unique.

• α ≥ 1: Hard. Multiple solutions.

t⃗easy

t⃗hard

Green: Unique Decoding

Radius (≈ λ1/2)

BDD becomes hard when the target t⃗ is

outside the packing spheres.

9

BDD: Definition and Complexity

Definition (Search-BDD)

Given a basis B and a target t⃗ close to the lattice:

t⃗ = Bc⃗ + e⃗

Find the lattice vector v⃗ = Bc⃗ .

Babai’s Success Condition

Finds the solution if error is in the ”box”:

|⟨b⃗∗i , e⃗⟩| ≤
1

2
∥b⃗∗i ∥2 ∀i

t⃗easy

t⃗hard

Green: Unique Decoding

Radius (≈ λ1/2)

BDD becomes hard when the target t⃗ is

outside the packing spheres.

9

BDD Reduction to Projected Sublattice

Lemma (Reduction Lemma)
Let (B, t⃗) be a BDD instance with error e⃗◦. Let

ℓ = n − n′.

The full instance is solved if:

1. Babai succeeds on the top-left:

|⟨b⃗∗i , e⃗◦⟩| ≤
1

2
∥b⃗∗i ∥2 ∀i < ℓ

2. Oracle succeeds on bottom-right:

SearchBDD solves the projected instance

correctly.

B

Indices

0 . . . ℓ

(Easy)

Indices

ℓ . . . n

(Hard)

10

BDD Reduction to Projected Sublattice

Algorithm: BDDReduce(B, t⃗, n′)
Input: Basis B, target t⃗, block size n′.

ℓ = n − n′.
1. Solve Hard Part (Projected):

(c⃗2, e⃗
′)← SearchBDD(B[ℓ:n,ℓ:n], π

⊥
ℓ (t⃗))

2. Update Target (Back-Subst):

t⃗res = t⃗ − B[0:n,ℓ:n]c⃗2

3. Solve Easy Part (Babai):

(c⃗1, e⃗)← BabaiNP(B[0:ℓ,0:ℓ], t⃗res)

4. Output: Return (c⃗ = (c⃗1, c⃗2), e⃗)

B

Indices

0 . . . ℓ

(Easy)

Indices

ℓ . . . n

(Hard)

1. Search

2. Update

3. Babai

10

The Primal Attack: Embedding (Bai-Galbraith)

1. The Embedding

Construct a lattice Λ(B) containing the error:(
b⃗

0

)
︸ ︷︷ ︸

t⃗

= B

(
u⃗

s⃗

)
+

(
e⃗

−ξs⃗

)
︸ ︷︷ ︸

e⃗emb

2. Optimization (Bai-Galbraith)

We tune ξ to balance the volume and error norm.

ξ = qm/n ∥e⃗∥
∥s⃗∥

√
n

m

⇒ Makes the error e⃗emb ”spherical” relative to the

volume det(L).

3. Resolution Strategy

1. Lattice Reduction: Reduce B (BKZ-β).

2. Decoding: Run Babai’s Nearest Plane.

3. Win: If error falls in the Babai Box.

qIm A

0 ξIn

=B

Bad ξ (Flat)

ξopt

Good ξ (Round)

Optimizing ξ aligns the error shape with the lattice

geometry, making BDD easier.

11

Primal Hybrid Attacks

Primal Hybrid Attack

Concept: Hybrid Splitting

Split the secret s⃗ into two parts:

• Guessed Part (s⃗1):

Exhaustive search.

• Unknown Part (s⃗2):

Recovered via Lattice

Reduction (BDD).

Secret s⃗

s⃗1 (Guessed)

dim k

s⃗2 (Lattice Red.)

dim n − k

Strategy Trade-off

Context: s⃗ is sparse.

Drop (Guess 0) Full Guess

Assumption s⃗1 = 0⃗ s⃗1 ∈ Support

Cost/Iter Low High

Candidates 1 ≈
(
k
h′

)
Success Prob. Low High

Use Case Very Sparse Moderately Sparse

”Drop & Solve” relies on the high probability that indices in s⃗1
are zero.

12

Guess + Verify: The Algorithm

Parameters

• k: Dim. of guessed part (exhaustive).

• h′: Weight of guessed part.

• β: BKZ block size (reduction).

Arem

Reduced Basis

Aguess

Enum

·

s⃗1

s⃗2
1. Pick

Guess

2. Update Target

3. Recover s⃗1

Complexity

Cost ≈
(k
h′

)
· TBabai + Treduction

13

Guess + Verify: The Algorithm

Execution Flow

Preprocessing: Reduce basis B of dim n − k .

Online Phase (Loop):

1. Guess a candidate s⃗2 (of weight h′).

2. Update the target (remove guess):

t⃗ ′ = t⃗ − Aguess s⃗2

3. Solve BDD on the remaining part:

s⃗1 ← Babai(B, t⃗ ′)

4. Verify: Is the residual error small?

If ∥t⃗ ′ − Arem s⃗1∥ ≤ R =⇒ Found!

Arem

Reduced Basis

Aguess

Enum

·

s⃗1

s⃗2
1. Pick

Guess

2. Update Target

3. Recover s⃗1

Complexity

Cost ≈
(k
h′

)
· TBabai + Treduction

13

Complexity Analysis: The Master Equation

Total Attack Cost (Work Factor)

To find the secret with high probability:

Cost ≈ 1

ptotal
· (CostBKZ-β + G · CostBabai)

Reduction
(BKZ-β)

Enumeration (G)

Babai Check

Babai Check

...

Repeat

1/ptotal

The Components

Probability (ptotal):

pcomb(k , h
′)× pbabai(β, k, h

′)

(Prob. that guess is in support × Prob. Babai

works)

Search Space (G):

G ≈
(
k

h′

)
· |Supp(χs)|h

′

(Number of candidates to test per

reduction)
14

Optimizing the Trio (k , h′, β)

The 3 Tuning Knobs

We minimize the cost by balancing:

1. Blocksize β (Lattice Strength):

• ↑ Probability (Geometry).

• ↓ Cost explodes (Exp).
2. Dimension k (Hybrid Split):

• ↑ Reduction is easier (dim n − k).

• ↓ Search space G grows.

3. Guess Weight h′ (Coverage):

• ↑ Probability (Combinatorics).

• ↓ G explodes
(
k
h′

)
.

Params (k , h′, β)

Log Cost

Red. Cost

Repetitions

Total Cost

Optimal

Set

Objective Function

Minimize ≈
CostBKZ−β + G(k, h′) · CostBabai

ptotal(β, k, h′)

15

Main Contributions

Our Contributions: A Full GPU Pipeline

1. cuBLASter: GPU Lattice Reduction

• Port of BLASter (Asiacrypt ’25) to

CUDA/CuPy.

• Fast LLL/DeepLLL/BKZ.

• Bridges gap to GPU-G6K (β ≥ 60).

2. Smart BDD Preprocessing

• Dimension Reduction: Project to sublattice

before decoding.

• Accelerates BDD solving.

3. Batched Babai on GPU

• Massively parallel verification.

• Exploits cuBLAS batch operations.

cuBLASter

(Basis Reduction)

Dim. Reduction

(Sublattice Proj)

Batched Babai

(Parallel Solve)

← Your lib

16

Our Contributions: A Full GPU Pipeline

1. cuBLASter: GPU Lattice Reduction

• Port of BLASter (Asiacrypt ’25) to

CUDA/CuPy.

• Fast LLL/DeepLLL/BKZ.

• Bridges gap to GPU-G6K (β ≥ 60).

2. Smart BDD Preprocessing

• Dimension Reduction: Project to sublattice

before decoding.

• Accelerates BDD solving.

3. Batched Babai on GPU

• Massively parallel verification.

• Exploits cuBLAS batch operations.

cuBLASter

(Basis Reduction)

Dim. Reduction

(Sublattice Proj)

Batched Babai

(Parallel Solve)

← Efficiency

16

Our Contributions: A Full GPU Pipeline

1. cuBLASter: GPU Lattice Reduction

• Port of BLASter (Asiacrypt ’25) to

CUDA/CuPy.

• Fast LLL/DeepLLL/BKZ.

• Bridges gap to GPU-G6K (β ≥ 60).

2. Smart BDD Preprocessing

• Dimension Reduction: Project to sublattice

before decoding.

• Accelerates BDD solving.

3. Batched Babai on GPU

• Massively parallel verification.

• Exploits cuBLAS batch operations.

cuBLASter

(Basis Reduction)

Dim. Reduction

(Sublattice Proj)

Batched Babai

(Parallel Solve)
← Throughput

16

Implementation: Open Source

� GitHub Repositories

• cuBLASter: https://github.com/ludopulles/cuBLASter

• GPU Primal Hybrid: https://github.com/ludopulles/GPUPrimalHybrid

Key Technologies

• CUDA + CuPy (NumPy-compatible GPU API)

• cuBLAS and cuSOLVER for linear algebra

• Custom GPU kernels for specialized operations

• Integration with fplll and G6K

17

Why GPUs for Lattice Reduction?

The Bottleneck: GSO Updates

Lattice reduction (LLL, BKZ) is

dominated by floating-point arithmetic.

• Heavy Compute: Gram-Schmidt

Orthogonalization (GSO) costs

O(n3) (by QR).

• Memory Bound: Large basis

matrices saturate CPU caches.

The Solution: GPU Offloading

GPUs offer massive throughput for linear

algebra.

• Massive Parallelism: Thousands of cores

to parallelize independent operations.

• Specialized Hardware/Libs: Optimized

for matrix multiplications, triangular

solves, QR factorizations.

The Key Constraint: Batching

To leverage GPUs effectively, we must batch small linear algebra operations to

amortize kernel launch overhead. 18

Seysen’s Size Reduction Algorithm

Classical Approach (CPU)

Recursive algorithm on upper-triangular R ∈ Rn×n:

1. Split: R =

(
R11 R12

0 R22

)
with R11 size ⌊n/2⌋

2. Recursively reduce R11 and R22

3. Reduce R12 with respect to R11

Problem: Sequential recursion doesn’t parallelize well, because R11 and R22 may be

not the same size. (If n is not a power of two)

19

Batched Size Reduction: Motivation

GPU Optimization: Batched Reduction

Key insight: Many submatrices of the same size

can be reduced in parallel

• Parse R with R11 size 1
2 · 2

⌈log2(n)⌉ (next power

of 2)

• For each level k = 2, 4, 8, . . . , 2⌈log2(n)⌉:

• Identify all k × k diagonal blocks:

R[ik:(i+1)k,ik:(i+1)k]

• Reduce all blocks in one batched kernel call

• Total: 2⌈log2 n⌉ kernel sequences (vs O(n)

sequential calls)

R

Step 1: k = 2

Step 2: k = 4

Parallel

Batch

Parallel

Batch

20

Batched Size Reduction: Implementation Details

Interior vs Terminal Blocks

• Interior blocks: Full k × k submatrices, can

batch efficiently

• Terminal block: Last block may be smaller

(n − ⌊n/k⌋k)× (n − ⌊n/k⌋k), handled
separately

R

Interior (k × k)

Batched Terminal

(Remnant)

Optimizations

• Level k = 2: Vectorized super-diagonal update (single kernel)

• For k < 4 interior blocks: Fall back to unbatched path (avoid launch overhead)

Performance Gain

Batching reduces kernel launch overhead from O(n) to O(log n) calls
21

Theoretical Foundation: Recursive Batch Nearest Plane (BLASter)

Algorithm 1 BatchNearestPlane(R,T)

1: Input: R ∈ Rn×n,T ∈ Rn×N

2: if n = 1 then

3: C← ⌊T/R⌉
4: T← T− RC

5: return C

6: else

7: Split R =

(
R11 R12

0 R22

)
,T =

(
T1

T2

)
8: C2 ← BatchNP(R22,T2) {Recurse Bottom}
9: T1 ← T1 − R12C2 {Update Top}
10: C1 ← BatchNP(R11,T1) {Recurse Top}
11: return

(
C1
C2

)
12: end if

Complexity

By using fast matrix

multiplication for the update

step, the runtime is:

O(N · nω−1)

22

Batched Nearest Plane: The Blocked Algorithm (BLASter)

The Core Idea

We simulate the recursive calls R[i ,k) → (R[i ,j),R[j ,k)). Instead of updating the whole

matrix at each step, we wait until the bottom block [j , k) is fully solved to update

the top block [i , j) in one go.

The Procedure (Iterate j from n down to 1):

1. Scale & Round: c⃗j =
⌊

1
Rjj
· Tj ,...

⌉
∈ ZN

2. Lazy Update (Based on Recursion Structure): We check if j is the ”split
point” of a recursion block [i , k).

• If yes: We have all coefficients Cj :k ready.

• We perform the update corresponding to the R12C2 term in the algorithm:

Ti :j ← Ti :j − Ri :j, j :k × Cj :k

(Otherwise, we just do a minimal scalar update to prepare row j − 1)

Ideally suited for GPU: Since N is huge, the update step becomes a massive matrix operation.
23

Batched Babai: The GPU Pipeline

1. Batch Structure (B = Bi · Bv)

We split the search space into:

• Indices (Bi): Choice of support S in the

guessed part (Bi ≤
(k
3

)
, typically

1024 . . . 4096, to fit in GPU memory).

• Values (Bv): Coefficients on fixed S .

(e.g., for χs ← B2 and h′ = 3,

Bv = 43 = 64)

Acols

Indices Bi

D
im

m ×
V

Values Bv

GEMM

G (Guesses)

Total Batch B = Bi · Bv

Batched Babai Kernel

24

Batched Babai: The GPU Pipeline

2. Execution Flow (5 Steps)

1. Gather: Fetch columns of A into tensor

A ∈ RBi×m×h′ .

2. Stack Values: Prepare V ∈ Rh′×Bv .

3. Batch GEMM: Compute guesses.

G← Reshape(A)× V

Result G is m × (Bi · Bv).

4. Project: Update targets in parallel.

T = Q⊤
2 (b⃗1⃗

⊤ − G)

5. Solve: Run Babai on (R22,T).

Acols

Indices Bi

D
im

m ×
V

Values Bv

GEMM

G (Guesses)

Total Batch B = Bi · Bv

Batched Babai Kernel

24

Dimension Reduction: The Pre-Filtering Strategy

Motivation: fast-reject

Full Babai is expensive (O(n2)). We need a cheap

pre-filter.

• Idea: Project lattice to last ℓ coordinates.

• Check: If ∥πℓ(e⃗)∥ > τ , reject immediately.

G Candidates

(≈ 109)

Projected Check
Dim ℓ ≪ n (Fast)

Reject if > τ

Survivors

≈ pFP

Full Babai
Dim n (Slow)

Trade-off

Small ℓ → Faster check but

requires tighter τ (risk of False

Negatives).
25

Dimension Reduction: The Pre-Filtering Strategy

False Positive Rate (pFP)

We model the target as uniform random in the

projected torus. The expected number of false positives

is:

E[FP] ≈ G · Vol(τBℓ)
det(Rproj)

To cap FP at 1%, we set τ such that:

τ ≈ GH(ℓ) ·
(
0.01 · det(Rproj)

G

)1/ℓ

G Candidates

(≈ 109)

Projected Check
Dim ℓ ≪ n (Fast)

Reject if > τ

Survivors

≈ pFP

Full Babai
Dim n (Slow)

Trade-off

Small ℓ → Faster check but

requires tighter τ (risk of False

Negatives).
25

Dimension Reduction: True Positive Analysis

The ”Good” Candidate

For the correct guess, the residual is Gaussian

noise:

e⃗proj ∼ N (0, σ2Iℓ)

Its squared norm follows a Chi-squared

distribution:

∥e⃗proj∥2/σ2 ∼ χ2
ℓ

The Constraint (Lower Bound)

We must accept the correct guess with prob pTP

(e.g., 99%):

τproj ≥ σ ·
√

Quantileχ2
ℓ
(pTP)

⇒ If τ is too small, we miss the secret (False

Negative).

Error ∥e⃗∥2

τmin

pTP = 99% Risk of

False Neg.

Synthesis

We need a gap between this τmin

(TP) and the previous τmax

(FP).
26

Dimension Reduction: Finding the Optimal ℓ

The Feasibility Condition

We need a radius τ that satisfies both:

1. High enough to catch the secret (TP).

2. Low enough to filter bad guesses (FP).

Selection Algorithm

Find the smallest ℓ such that:

σ
√

qχ2
ℓ
(pTP)︸ ︷︷ ︸

Min τ (Noise)

< GH(ℓ) ·
(
pFP det |R|

G

)1/ℓ

︸ ︷︷ ︸
Max τ (Density)

Then pick τ in the gap.

Benefit

Reduces verification cost from O(n2) to O((ℓ∗)2). Typically ℓ∗ ≪ n (e.g., 40 vs 1000).
27

Experimental Results

Experimental Setup

Hardware Platforms

Machine CPU Cores GPU

Y AMD EPYC-Milan 2.745GHz 96 NVIDIA H100 (1)

H Intel Xeon Gold 6248 2.5GHz 80 NVIDIA RTX 2080 Ti (4)

Z Intel Xeon Gold 5222 3.8GHz 16 NVIDIA RTX 2080 Ti (8)

Comparison Baseline

Cool & Cruel benchmarks :

• Large computing cluster with 256 NVIDIA V100 GPUs

• Report: minimum GPU-hours over 10 runs (when successful)

Fair Comparison

Focus on GPU-hours and core-hours, not wall time (accounts for parallelism) 28

Experimental Protocol: LWE Instances

LWE Parameter Sets

Extremely sparse instances from Wenger et

al.:

Parameter Set A Set B

Error Dist. Binomial Gaussian

Std Dev η = 2 σ = 3.19

Secret h h ∈ {9, . . . , 25}
Sparsity Fixed Hamming Weight

Dimension n = κ · D ∈ {512, 1024}
Structure Module-LWE (κ ∈ {1, 2})

Reproducibility

• Sample Size: 5-6 instances

per set.

• Control: Fixed PRNG seed for

deterministic generation.

Robust Metric

Unlike some benchmarks that

report the minimum time (lucky

runs), we report:
Average Wall-Time
(over successful runs)

Success Rate notation: x/y (x successes / y attempts). 29

Lattice Reduction Benchmarks: cuBLASter vs BLASter

Dimension Wall time

Algorithm 512 1024 flatter BLASter cuBLASter

LLL 512 — 156 s 6.8 s 2.9 s

LLL — 1024 — 26.0 s 5.6 s

BKZ-60 512 — — 363 s 218 s

DeepLLL-4 — 1024 904 s 223 s 49 s

• cuBLASter outperforms BLASter for n ≥ 512

• 2− 4× speedup for large dimensions

• Progressive BKZ-60 in dim 512: 40% faster

30

Attack Success: Guess + Verify vs Cool & Cruel

Instance Parameters G+V (ours) C+C

Type n h k h′ succ. GPU-h succ. GPU-h

Bin 2 · 256 11 393 3 5/6 5.7 2/10 26± 13

Bin 2 · 256 12 395 3 4/5 30.1 — —

Bin 2 · 256 20 234 ≤ 3 4/5 22.6 3/10 51± 13

Bin 2 · 256 21 235 ≤ 3 5/5 27.9 3/10 154± 13

Bin 2 · 256 25 235 ≤ 3 5/5 164.0 1/10 10752± 128

Ter 1 · 1024 11 768 3 5/5 9.1 1/10 102± 52

Ter 1 · 1024 9 800 3 5/5 9.4 10/10 31± 6

Ter 1 · 1024 10 801 3 5/5 42.3 0/10 —

31

Performance Comparison

Guess + Verify Advantages

• G+V achieves higher success rates on almost all instances

• G+V solves instances where C+C fails (e.g., Ter with h = 10)

• Lower GPU utilization than C+C (even including lattice reduction!)

Hardware

• Our experiments: 1 NVIDIA H100 or 2-8 RTX 2080 Ti GPUs

• C+C benchmark: Large cluster with 256 NVIDIA V100 GPUs

• Fair comparison: Focus on core-hours and GPU-hours, not wall time

32

Conclusion

Summary

Contributions

1. cuBLASter: Fast GPU lattice reduction library

• 2-4× speedup over BLASter for n ≥ 512

2. Efficient Guess + Verify implementation

• Dimension reduction for BDD

• Batched Babai’s Nearest Plane on GPU

3. Practical validation of primal hybrid attacks

• Outperforms Cool & Cruel in success rate and efficiency

• Open-source baseline for sparse LWE attacks

33

Impact & Future Work

Security Implications

• Practical demonstration that primal hybrid attacks are effective against sparse

LWE

• Validates lattice estimator predictions

Future Directions

• Explore meet-in-the-middle in primal hybrid guessing

• Optimize cuBLASter for even larger dimensions (Implement CUDA enumeration,

etc.)

• Explore other usecases of cuBLASter and batched Babai NP in lattice-based

cryptanalysis

34

Thank you!

Questions?

Code available at:

github.com/ludopulles/cuBLASter

github.com/ludopulles/GPUPrimalHybrid

Preprints:

https://ia.cr/2025/1990

https://ia.cr/2025/1002

Reference for benchmarks of Cool & Cruel

E. Wenger, E. Saxena, M. Malhou, E. Thieu and K. Lauter, ”Benchmarking Attacks

on Learning with Errors”, in S&P 2025

url: https://ieeexplore.ieee.org/document/11023470

https://ieeexplore.ieee.org/document/11023470

	Introduction & Motivation
	Mathematical Background
	Lattice Theory Foundations
	Learning with Errors
	Bounded Distance Decoding

	Primal Hybrid Attacks
	Guess + Verify Attack

	Main Contributions
	Batched Babai's Nearest Plane on GPU

	Experimental Results
	Hardware and Methodology
	cuBLASter Performance

	Conclusion

